
Technical Brief

Protecting Enterprise Data
In Hadoop
HPE SecureData for Hadoop

Introduction
Big Data is an exciting concept and emerging set of technologies that hold seemingly unlimited promise to
enable organizations to gain new analytic insights and operational efficiencies. It is a unique architecture
that enables low-cost, high-speed, parallel processing of huge data sets of structured and unstructured
data. In a recent survey, Frost & Sullivan found that 58% of large enterprises had already implemented one
or more Big Data and/or analytic solutions, and the rest were either implementing, evaluating, or planning
to investigate in the next 18-24 months*.

This Big Data movement is supported by multiple, open source initiatives centered on Apache Hadoop.
The core driving forces have been providing flexibility, performance and scalability through the use
of multiple standard, low-cost processing nodes and the Hadoop Distributed File System (HDFS) on
commodity off-the-shelf hardware. Security was not a key design criterion.

When used in an enterprise environment, however, the importance of data security becomes paramount.
Organizations must protect sensitive customer, partner and internal information from an increasing
array of advanced threats and risks, and must adhere to a complex set of privacy laws and compliance
requirements. But, by its nature, Hadoop poses many unique challenges to properly securing this
environment, including:

• Inability to guarantee complete removal of
sensitive data once it has entered the cluster
(as Hadoop does not guarantee when a file is
actually removed from the Trash plus there are
no secure wipe within HDFS to ensure all data
blocks have been purged).

• Rapidly evolving tools with frequent releases,
driven by a diverse and well funded open-
source developer community.

• Lack of a core set of security controls that
are commonplace on commercial, relational
database management system (RDBMS)
products.

• Multiple sources of data coming from multiple
enterprise systems and real-time feeds with
varying (or unknown) protection requirements.

*Big Data and Analytics Market Survey: Initial
Observations”, by Sandy Borthick, Frost & Sullivan,
BDA 2-09, July 2014

Further exacerbating these risks is the fact that the aggregation of data found within these Big Data
systems makes for an extremely alluring target for hackers and data thieves. Hadoop presents brand
new challenges to data risk management: the potential concentration of vast amounts of sensitive
corporate and personal data in a low-trust environment. The data-concentration issue alone can lead to
far-reaching business risks through the exposure of a company’s data assets if data access, analysis, and
extraction are not strictly controlled. A bank’s portfolio of positions and transactions may be visible and
searchable. An insurance company’s entire risk posture may be easily determined. A government’s military
health information may be indirectly exposed from health analytics. Fully securing Hadoop in enterprise
environments is essential to mitigate these potentially huge Big Data exposures.

Basic Hadoop Security Controls
There are a number of traditional IT security controls that should be put in place as the basis for
securing a Hadoop environment. All the standard perimeter protection controls apply – network firewalls,
intrusion detection and protection systems (IDPS), security information and event management (SIEM),
configuration control, vulnerability management, etc. These are the base level of general security controls.
For the next level of security, the open source community has been investing heavily in building Hadoop-
specific tools and best practices to provide enterprise grade security. There are four key areas of focus:
authentication, authorization, audit and data protection.

Authentication is fundamental to ensuring users are who they claim to be. It can be best accomplished by
integrating with existing enterprise identity and access management services. Apache Knox provides a
REST API Gateway as a single point of access to the Hadoop cluster (or multiple clusters). Using Kerberos
provides strong authentication to establish identities for clients, hosts and services. These tools can be
integrated with an organization’s LDAP server, including Microsoft Active Directory.

Much of the issue around Hadoop authorization has been the limited ability to grant or deny access
privileges on a granular basis. This is improving, as SQL-style authorization to Hive and HDFS ACLs are
now available in Hadoop 2.4. The capability to audit and track individual user accesses to specific services
and HDFS data components is also improving with the use of the above tools.

The fourth pillar of Hadoop security is data protection. Even with all the above controls, it is a given that at
some point unauthorized users will gain inappropriate access to Hadoop data. This is why protecting the
data itself through encryption or other de-identification techniques is of paramount importance.

De-identified data in Hadoop is protected data, and even in the event of a data breach, yields nothing of
value, avoiding the penalties and costs such an event would otherwise have triggered.

Data Protection Methodologies
There are multiple approaches that can be deployed to directly protect the data in a Hadoop environment:

Volume Storage and File-level Encryption
This is a fairly standard type of encryption frequently deployed by IT to protect sensitive data in file
systems. This is often referred to as “data-at-rest” encryption. The data is encrypted at the file system
or disk volume level, and is protected while residing “at rest” on the data store. This protects against
unauthorized personnel who may have physically obtained the disk from being able to read anything from
it. This is a useful control in a large Hadoop cluster due to frequent disk repairs and swap outs.

Technical Brief

• Multiple types of data (structured RDBMS-
based, file-based, text feeds, etc.) combined
together in the Hadoop “data lake”.

• Access by many different users with varying
analytic needs and ad-hoc processes, with the
likelihood of propagating to other enterprise
systems and tools.

• Automatic and largely uncontrollable replication
of data across multiple nodes once entered into
the HDFS data store.

• Reduced physical and logical access controls if
Hadoop clusters are deployed remotely or in a
cloud environment.

A global communications company
wanted to use Hadoop to analyze
massive customer data sets, social
media and communications feeds
for patterns of behavior in order to
detect fraud and enhance customer
service. HPE FPE technology was
used to de-identify sensitive data
in several hundred million customer
records from Teradata and IBM
Mainframes as it was ingested into
Hadoop in under 90 seconds.

Global
Telecommunication
Company

USE CASE

Volume-level encryption using base-level Linux OS capabilities has been available for some time, and
there is considerable effort right now to add HDFS-level encryption to Hadoop, which would provide more
granular control at the file system level.

However, both these approaches do nothing to protect the data from any and all access when the disk is
running within the system – which, of course, is essentially all the time. Decryption is applied automatically
when the data is read by the operating system, and live, vulnerable data is fully exposed to any user or
process accessing the system, whether authorized or not. Further, every read and every write invokes
encryption and decryption, which adds overhead, even if the data being written or read is not sensitive.

Transport-level Encryption
This is another common data encryption technique used to protect data while being transferred across a
network, and is sometimes called “data-in-motion” or “wire” encryption. SSL/TLS protocols are a common
example of this. Wire encryption is currently receiving a lot of attention from the Hadoop community to
ensure Hadoop programs can support these secure transport-level protocols. This is an important data
protection technique, as data moving “across the wire” is often most vulnerable to interception and theft,
whether transferring data across clusters in a rack within the datacenter, nodes in the cloud, or especially
across a public network (i.e. the Internet).

However, the protection this method affords is limited to the actual transfer itself. Clear, unprotected data
exists at the source, and clear, unprotected data is automatically reassembled at the destination. This
provides many vulnerable points of access for the potential thief, and like Storage-level encryption above,
does nothing to protect the data from unauthorized users who have obtained fraudulent access to the
system itself.

Data Masking
This is a useful technique for obfuscating sensitive data, commonly used for creation of test and
development data or analytic data from live production information. A typical system will support multiple
transformation techniques, from extremely simple (replacing digits with “X’s”) to quite complex (replacing
valid addresses with different valid addresses from the same area). Depending on the requirements and
how cleverly you select the transformations, masked data can sometimes be used in its protected state for
analytic applications. However, there are several limitations of data masking in the Hadoop environment:

• Masked data is intended to be irreversible,
which limits its value for many analytic
applications and post-processing requirements.
For example, a common Hadoop use case is
taking data from live systems, performing low
cost analysis in Hadoop, and then pushing
downstream processing to existing Business
Intelligence (BI) tools where live data is again
needed for business action and decision.

• There is no guarantee the specific masking
transformation chosen for a specific sensitive
data field fully obfuscates it from identification,
particularly when analyzed with adjacent,
unaltered fields or correlated with other data.
For example, in a recently released dataset of
supposedly masked information on 173 million
taxi rides in New York City, individual taxis and
their drivers could be re-identified using related
data because of a weak hashing algorithm used
to alter the license plate numbers.

• Many data masking transformations create
duplicates and destroy referential integrity,
resulting in join operations on data base tables
not mapping properly and reducing the ability
to perform analytic functions on the data.

• Specific masking techniques may or may
not be accepted by auditors and assessors,
affecting whether they truly meet compliance
requirements and provide safe harbor in the
event of a breach.

• The masking process, depending on the
transformation, may require mapping tables,
making processing quite slow and not scalable.
These mapping tables create another place to
protect sensitive data, which at Hadoop scale,
may be very expensive or even impossible to
achieve.

Technical Brief

A leading health care insurance
company wanted to open their
massive, previously untapped data
sets to their Hadoop developers
to enable research, discovery and
innovation through developer
hackathons. They also had the
objective to automate multiple high
value use cases, such as identification
of prescription fraud, previously
hampered by manual processes. HPE
FPE technology enabled field-level
de-identification of sensitive ePHI
and PII data across a 1000-node
distribution.

A global financial services firm
needed to adopt Hadoop to improve
its fraud detection capabilities,
analyzing customer transaction
patterns across hundreds of millions
of consumers. Data de-identification
in-stream during ETL ingestion
with Informatica enabled secure
analytics across fields containing
dates, date ranges, card-holder data,
and consumer personal data without
exposing the live data. After Hadoop
processing, the de-identified data is
transferred into their traditional BI
tools for additional analysis. The data
remains protected throughout with
end-to-end field level encryption and
tokenization, avoiding compliance
and risk challenges, while enabling
new approaches to reducing fraud.

Health Care
Insurance Company

USE CASE

Global
Financial Services
Company

USE CASE

Data-centric Security
A data-centric security approach is quite different than the above techniques, and calls for de-identifying
the data as close to its source as possible, replacing the sensitive data elements with usable, yet de-
identified, equivalents that retain their format, behavior and meaning. This is also called “end-to-end data
protection” and provides an enterprise-wide solution for data protection that extends beyond the Hadoop
environment.

This protected form of the data can then be used in subsequent applications, analytic engines, data
transfers and data stores. For Hadoop, the best practice is to never allow sensitive information to reach
the HDFS in its live and vulnerable form.

HPE SecureData - Data-centric Security
To properly protect data in Hadoop, you need to employ a data-centric security approach. As the above
examples illustrate, this cannot be achieved by simply deploying piecemeal encryption or data masking
within Hadoop. It requires protecting data-at-rest, in-use, and in-motion; as close to its source as possible,
and doing so in way that is scalable, format preserving and maintains the analytic meaning and logic of
the data without live data exposure risk. It requires protecting the data at the field level in a way that it can
be used by applications in its de-identified state, while also being selectively and securely re-identified for
those specific applications and users that require it. HPE SecureData provides such a solution.

Three core technology breakthroughs enable HPE SecureData to meet these requirements:

HPE Format-Preserving Encryption
A fundamental innovation enabling HPE SecureData data-centric platform is HPE Format-Preserving
Encryption (FPE), providing high strength encryption of data without altering the original data format
and preserving business value and referential integrity across distributed data sets. This enables
applications, analytic processes and databases to use the protected data without alteration, even across
distributed systems, platforms and tools. Protection is applied at the field or even partial-field level, leaving
non-sensitive portions of fields available for applications while protecting the sensitive parts. HPE FPE
preserves referential integrity, which means protected data can still be consistently referenced and joined
across tables and data sets – a major requirement for proper operations with the mix of data entered into
Hadoop, and especially critical where common identifiers like Social Security Numbers or ID’s are used as
common references across disparate data sets.

Policy controlled secure reversibility enables data to be selectively re-identified in trusted systems which
need live data, enabling full end-to-end data processes to be secured without resorting to risky and
cumbersome mapping databases. HPE Format-Preserving Encryption has also received strong attention
from the government, and is recognized as a mode of standard AES encryption, specifically FF1 mode
AES defined in NIST 800-38G. This provides users confidence in the security proofs and standards
underpinning HPE FPE. HPE SecureData has built a robust eco-system around HPE FPE, providing
support across multiple enterprise platforms with proven implementation tools, delivering ‘always-on’ data
protection.

HPE Secure Stateless Tokenization
Augmenting the HPE FPE encryption technology is HPE Secure Stateless Tokenization (SST).
Tokenization is the process of replacing live data with a random surrogate. Traditional approaches use
databases to map live to surrogate values, which limit performance and scale, rendering it impractical
for most Hadoop use cases. HPE SST technology is stateless, eliminating the need for a token database.
Instead, the system uses a pre-generated token mapping table containing random numbers using a
proven, independently validated random token mapping method. This eliminates the complexities of
token database synchronization, back-up and recovery, and provides a 100% guarantee of data integrity
with no data collisions. Tokenization is an important de-identification capability for credit card numbers,

NIST Special Publication 800-38G Draft

Recommendation for Block Cipher
Modes of Operation: Methods for
Format-Preserving Encryption

Morris Dworkin

C O M P U T E R S E C U R I T Y

FPE facilitates the targeting of
encryption to sensitive information, as
well as the retrofitting of encryption
technology to legacy applications,
where a conventional encryption mode
might not be feasible because it would
disrupt data fields/ pathways. FPE has
emerged as a useful cryptographic tool,
whose applications include financial-
information security, data sanitization,
and transparent encryption of fields in
legacy databases.

Source: US Government NIST SP 800-
38G Draft Standard

Technical Brief

and proper use of this feature can help ensure your Hadoop environment stays out of scope for PCI DSS
compliance requirements, avoiding cost and disruptive audit processes.

Combining HPE FPE with HPE SST gives the user the necessary flexibility to select the best data
protection technique for each data type and regulatory mandate, all within a single solution. Both HPE
FPE and HPE SST permit data to be de-identified at scale. De-identification tasks can be processed in
parallel across multiple nodes, enabling massive scale and performance without additional infrastructure
or complexity.

HPE Stateless Key Management
HPE Stateless Key Management provides keys to be derived as needed with no storage or database
management issues because database synchronization and frequent backups are not required. Because
keys are dynamically generated, there is no need for key backup, and no possibility of key loss. Key
management can be linked to existing identity management infrastructure, including external LDAP
directories. Permission to decrypt or de-tokenize can be assigned on an application policy basis, and can
incorporate user roles and groups to simplify management based on identity management system policy.
This role based access to data at the field level is extremely important in the Hadoop environment for
enabling applications and users to decrypt exactly the data they are authorized to access, presenting
different views of clear and encrypted fields to match specific user permissions. HPE Stateless Key
Management also enables simplified implementation and provides high-performance, scalable, distributed
processing that is well-matched with the Hadoop architecture.

HPE SecureData Deployment Architecture
Implementing data-centric security involves installing the HPE SecureData infrastructure components and
then interfacing with the appropriate applications and data flows. Infrastructure deployment is simplified
by the use of a HPE SecureData virtual software appliance that includes the Key Server, Management
Console, Web Services Server, etc. Developer templates, APIs and command line tools enable encryption
and tokenization to occur natively on the widest variety of platforms, including Linux, mainframe and
mid-range computers, and support integration with a broad range of infrastructure components, including
ETL, databases, and, of course, programs running in the Hadoop environment. See the HPE SecureData
Deployment Architecture diagram below summarizing these options:

Technical Brief

Technical Brief

Options
1. Apply data protection at source applications

2. Apply data protection during import into Hadoop (ETL process, Sqoop)

3. Apply data protection within Hadoop (e.g. MapReduce)

4. Using de-identified data within Hadoop (e.g. Hive)

5. Using and exporting re-identified data from Hadoop (e.g. Hive)

6. Exporting data and re-identifying outside Hadoop (ETL process)

7. Using storage-level encryption within Hadoop

Option 1: Apply data protection at source applications
This is the ideal scenario, so that the sensitive data is fully protected wherever it flows, including Hadoop. It also helps ensure that the Hadoop system is
not brought into scope for PCI and other compliance policies. It requires access to the source applications outside the Hadoop environment to add the HPE
SecureData interface calls for encryption and tokenization. But once protected, this information can be transferred freely into HDFS tools and then be used “as is”
for many analytic tasks (see option 4), or selectively re-identified when in-the-clear data is required (see options 5 and 6).

HPE SecureData Data Protection Options using Hadoop
Using a data-centric security approach, it is necessary to identify the sensitive data fields within all data sources that will be transferred into Hadoop, and make a
determination as to the most appropriate point to de-identify the data. The general principal is to protect the data as close to the original source as possible. Put
another way, the best place to protect data in Hadoop is before it gets to Hadoop. This is not always possible, and encryption/tokenization can also be evoked
during an ETL transfer to a landing zone, or from the Hadoop process transferring the data into HDFS.

Once the secure data is in Hadoop, it can be used in its de-identified state for additional processing and analysis without further interaction with the HPE
SecureData system. Or the analytic programs running in Hadoop can access the clear text by utilizing the HPE SecureData high-speed decryption/de-
tokenization interfaces with the appropriate level of authentication and authorization.

If processed data needs to be exported to downstream analytics in the clear – such as into a data warehouse for traditional BI analysis – you again have multiple
options for re-identifying the data, either as it exits Hadoop using Hadoop tools or as it enters the downstream systems on those platforms. HPE SecureData
provides seven specific options for protecting sensitive data used in Hadoop:

Option 2: Apply data protection during import into Hadoop (e.g. ETL process or Sqoop ingestion)
This is a good option that does not require interfacing at the source applications – the data is protected as it enters Hadoop. This can either be achieved by
interfacing with HPE SecureData from traditional ETL and batch tools in a landing zone outside Hadoop, or by a Hadoop-resident import program such as Sqoop.

As part of the HPE SecureData Hadoop Installation Kit, Developer Templates and documentation are included to guide the programmer in properly calling the
HPE SecureData interfaces from common Hadoop programs including Sqoop, MapReduce and Hive.

In this case, Sqoop would be one of the preferred methods of ingesting data into the Hadoop instance. Sqoop can connect to an SQL database and load
data directly into HDFS. While Sqoop is not a full ETL tool, it does provide efficient and fast Extract and Load functionality. Although Sqoop does not provide
transformation functionality as a standard capability, HPE Security - Data Security has developed a unique approach that enables encryption operations to be
performed during a Sqoop import job.

To secure data during the ingestion, the sensitive fields to be protected are identified, and the format to be used for de-identification is defined. A simple excerpt
from the HPE SecureData configuration file for protecting credit card data would be as follows:

Sqoop.field.0.column.name = credit_card

Sqoop.field.0.format.name = cc-sst-6-4

Technical Brief

Email, birthdate, credit card number and social security number have been determined to be sensitive information that must be protected (marked in yellow).
Using HPE FPE technology, email, birthdate and SSN are encrypted as close to the source of the data as possible, using whatever HPE SecureData platform
interface is required. HPE SST is used to tokenize the credit card number. This results in the following de-identified data records:

Data from these protected tables are available to be loaded into Hadoop as needed; including subsets of the fields and/or joined data using the social security
number as the index, even though that is an encrypted field, for example:

ID

1

Name

Tyshawn Medhurst LA 44638 F91VRPV1xfas@hpF63.uk2 8/2/1905 5225629286144450 246-07-4941 621

State Zipcode Email Birthday Credit Card SSN Score

HPE FPE and HPE SST preserve referential integrity, which means protected data can be consistently referenced and joined across tables and data sets.

Protected Table 2:

SSN Score

246-07-4941 621

Protected Table 1:

F91VRPV1xfas@hpF63.uk2 8/2/1905 5225629286144450

ID SSNName Street City State Post code Phone Email Birthday Credit Card

1 Tyshawn Medhurst Verl Plaza New Lianemouth LA 44638 (405)920-0731 246-07-4941

Table 1:

Table 2:

ID

SSN

SSN

1

Name

Score

Tyshawn Medhurst

675-03-4941

675-03-4941

621

Street

Verl Plaza

City

New Lianemouth LA 44638 (405)920-0731 tyshmedhurst@gmail.com 3/2/1977 5225629041834450

State Post code Phone Email Birthday Credit Card

To facilitate the discussion, we have constructed two example data base tables (each one record in length), the first showing multiple fields related to a credit
card transaction, the second showing credit score indexed by social security number (SSN). The records are coded in red to designate unprotected, in-the-clear
data.

That would convert the unencrypted credit card number stored in the data store to follow the encryption settings for policy ‘cc-sst-6-4’, which encrypts the
middle digits of the credit card number while leaving the first six and last four in their original state. After generation of the import classes, the system then
automatically de-identifies the information in the “credit_card” column when loading the information into Hadoop.

With this integration, the source information stored in the database that Sqoop is accessing might be this:

Technical Brief

ID

1

Name

Tyshawn Medhurst LA 44638 F91VRPV1xfas@hpF63.uk2 8/2/1905 5225629286144450 246-07-4941 621

State Zipcode Email Birthday Credit Card SSN Score

When using Sqoop, it is important you segregate the Hadoop processing in its own landing zone. Clear data will temporarily exist in memory, but only protected
data will be written into HDFS.

While the actual data being imported into Hadoop, assuming de-identification of the four sensitive fields would be this:

ID

1

Name

Tyshawn Medhurst LA 44638 tyshmedhurst@gmail.com 3/2/1977 5225629041834450 675-03-4941 621

State Zipcode Email Birthday Credit Card SSN Score

Once the MapReduce job is completed, there would be another file inside of HDFS that contains the encrypted information as shown below:

ID

1

Name

Tyshawn Medhurst LA 44638 F91VRPV1xfas@hpF63.uk2 8/2/1905 5225629286144450 246-07-4941 621

State Zipcode Email Birthday Credit Card SSN Score

Option 3: Apply data protection within Hadoop (e.g. MapReduce)
This option utilizes the HPE SecureData interfaces running directly within Hadoop jobs. This provides the opportunity to integrate with other Hadoop pre-
processing tasks, as well as protecting data fields once they are identified in Hadoop (such as when schema are dynamically defined).

Since the MapReduce Framework is built on Java, it is easy to integrate encryption and decryption into the Map and Reduce jobs that are executed in the
Hadoop cluster. HPE SecureData Hadoop API and web services interfaces are again used, with Developer Templates supplied to assist the programmer in
properly calling these HPE SecureData interfaces.

In order to perform the encryption function, the writer of the MapReduce job needs to create a Crypto object and pass it information about the object to be
encrypted and its format, so that the correct encryption for the field can be performed (i.e. Credit Card, SSN, etc). The return value is then the actual encrypted
value.

String[] output = crypto.protectFormattedDataList(input);

The process to decrypt information is very similar – you provide the encrypted value and the decrypted information is then returned. Using our example data, we
could assume that the data already stored in HDFS looks like this:

ID

1

Name

Tyshawn Medhurst LA 44638 tyshmedhurst@gmail.com 3/2/1977 5225629041834450 675-03-4941 621

State Zipcode Email Birthday Credit Card SSN Score

The customer needs to be aware that with this approach, unprotected data has already entered the Hadoop system, and the original data cannot easily be
removed (due to the automatic data replication and lack of a secure wipe capability within HDFS). For this reason, some customers might use a dedicated, highly
controlled Hadoop cluster specifically for staging, and/or will completely rebuild the cluster once the sensitive data has been protected and transferred out.

Option 4: Using de-identified data within Hadoop
Once the data has been imported into Hadoop, the ideal scenario is performing all analytics and processing on the protected data, which avoids the need for
decryption or de-tokenization. This is often possible by utilizing HPE SecureData data transformation options such as leaving leading/trailing digits in the clear,
maintaining data ranges, preserving date relationships, etc.

Technical Brief

F91VRPV1xfas@hpF63.uk2

ID

1

Name

Tyshawn Medhurst LA 44638 8/2/1905 5225629286144450 246-07-4941 621

State Zipcode Email Birthday Credit Card SSN Score

ID

1

Name

Tyshawn Medhurst LA 44638 tyshmedhurst@gmail.com 3/2/1977 5225629041834450 675-03-4941 621

State Zipcode Email Birthday Credit Card SSN Score

Using Hive on our sample data, you might execute the following Query:

SELECT sid, s.name, s.email, ,s.birth_date, s.cc, s.ssn,cs.creditscore

FROM voltage_samples JOIN voltage_sample_creditscorecs

ON (s.ssn = cs.ssn) WHERE s.id <= 10;

The returned data would be:

The consistency of the data is preserved, and analytical operations in Hadoop would work the same way as in the unencrypted state, including table joins.
Because HPE FPE provides high-strength encryption while it preserves business value of the data, and referential integrity across distributed data sets, the vast
majority of analytics can be securely performed on the de-identified data.

Option 5: Using and exporting re-identified data from Hadoop
There will be situations in which some data fields need to be processed in their clear, unaltered form, and this is possible using the same interfaces as discussed
in Options #2 and #3 above. HPE SecureData architecture enables the distributed, high-speed re-identification of the data so as not to slow down the Hadoop
processing. If required, this data can be streamed to downstream applications for additional processing.

Taking the same HIVE example used in #4 above, only this time we assume that clear text is required, we use access functions to re-identify the information,
using the Developer Template for HIVE UDF, as follows:

SELECT s.id, s.name, accessdata(s.email, ‘alpha’), accessdata(s.birth_date, ‘date’), accessdata(s.

cc, ‘cc’), accessdata(s.ssn, ‘ssn’),cs.creditscore

FROM voltage_sample s JOIN voltage_sample_creditscorecs

ON (s.ssn = cs.ssn) WHERE s.id <= 10;

This results in returning the data in its re-identified form:

This information can be used temporarily by the Hadoop analytic program to facilitate its computations, or passed outside Hadoop to other post-processing
applications or analytic programs. This functionality is even available remotely through ODBC and JDBC, allowing customers to utilize their favorite analytic
application without the need to add HPE SecureData code on the client side.

Option 6: Exporting data and re-identifying outside Hadoop (ETL process, data export or BI import)
Hadoop data can also be bulk transferred and re-identified during ETL processes and data exports for downstream processing outside of Hadoop. As with
options #1 and #2, the interface to HPE SecureData can be evoked from virtually any standard platform.

A common use case is to perform large scale analytics in the Hadoop cluster and then transfer the reduced data set into Teradata or other computing platforms
with existing fine tuned business analytic rules, where it can be processed by existing BI tools using the data either in its protected state or re-identified within
the host BI environment, as needed.

Option 7: Using storage-level encryption within Hadoop
HPE SecureStorage enables production use of Transparent Data Encryption (TDE) within Hadoop to create a safe landing zone at the scale of the full Hadoop
cluster, to deposit data with granular access controls. From there, data-centric security can be applied as the data is migrated into the broader cluster using tools
such as MapReduce. TDE can also be used to provide the data-at-rest with granular access control for unstructured data in Hadoop.

HPE SecureStorage also offers the option of encryption at the volume level, similar to other “data-at-rest” Hadoop encryption solutions available in the industry
today. It is not necessary for any fields already protected by the data-centric security options listed above, of course, but is very useful as an extra level of defense
for the entire data set stored in Hadoop, particularly unstructured data or sensitive data you might not yet be aware of. As discussed above, this reduces data
exposure when cluster drives are disposed, repaired or re-purposed, but does not protect the data if accessed while the disk is running live within the system.

The big advantage of HPE SecureStorage volume-level encryption versus these other Hadoop tools is that it uses the same key servers and encryption
infrastructure as HPE SecureData data field-level products, enabling simplified and consistent key management across your organization. With HPE Stateless Key
Management, there is no need for key backup, and no possibility of key loss.

Conclusion
Hadoop is an exciting new set of technologies whose unique architecture provides the ability to efficiently process huge sets of data. However, by its nature it is
less secure than traditional enterprise computing environments, while presenting a particularly high-value target for hackers and thieves. The only way to ensure
sensitive information is protected in Hadoop is to protect the data itself, ideally before it enters the Hadoop data store. This protection needs to prevent the data
from unauthorized access while at-rest, in-use and in-motion.

HPE SecureData data-centric security platform provides unique benefits that can provide this protection while still maintaining its value. Specifically, HPE
SecureData provides:

• The ability to protect data as close to its source as possible.

• Support for encryption, tokenization and data masking protection techniques.

• Data is usable for most applications in its de-identified state.

• The ability to securely re-identify data when required – only by authorized users and applications.

• Protection techniques backed by security proofs and standards.

• High performance, high scalability well-matched with Hadoop speeds.

• Broad platform and application support – inside and outside Hadoop.

Technical Brief

© Copyright 2015 Hewlett Packard Enterprise Development Company, L.P. The information contained herein is subject to
change without notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

Trademark acknowledgments, if needed.

4AA6-0857ENW, November 2015

For more information:

voltage.com

http://hpe.com/software/datasecurity

http://www.voltage.com
http://hpe.com/software/datasecurity
https://www.facebook.com/HPE-Security-Data-Security-121405037048/
https://www.linkedin.com/company/hpe-security-data-security
https://twitter.com/hpe_voltage
mailto:datasecuritymarketing%40hpe.com?subject=Request%20for%20Information

