

HPE SecureData and
F5 Networks, Inc.
Integrated data protection solution

Contents
Introduction .. 2

Product requirements .. 2
Audience ... 2

Architecture and process ... 2

Architecture description ... 2

Process description..3

Implementation details .. 4

Extractor iRule ... 4
Coding example ... 5

Encryptor F5 iRule ... 7

Coding example ... 7

References ... 9

About HPE Security – Data Security ...10

Technical white paper

Technical white paper Page 2

Introduction
The combination of F5 Networks BIG-IP Local Traffic Manager and HPE SecureData enables data protection to take place on demand at the
point sensitive data passes into a network or from application to application.

For industries subject to security audits, such as PCI DSS, this is a big benefit as data protection takes place at the edge or ingress point to the
enterprise and has the effect of reducing the exposure of live and regulated data on the internal IT network. This can significantly reduce the
cost and complexity of audit. Moreover, the implementation of the combined solution is relatively simple with the benefit of short time to value.

Figure 1. HPE SecureData and F5 BIG-IP LTM: Real-time Protection

This white paper describes the process for integrating HPE SecureData application programming interface (API) with F5’s BIG-IP Local Traffic
Manager. The F5 BIG-IP LTM Traffic Manager will be set with a policy to look for a specific HTML page and payload and F5 iRules® to transform
data elements of the page on the fly to a de-identified and protected form.

The solution provides a data de-identification services at the network layer, while processing a Hyper Text Transport Protocol (HTTP) request.
Thus the solution can be used with all application server types, including but not limited to ASP, DHTML, DO, JSP, and PHP server types, without
modifying the Web application itself. A further benefit of encrypting sensitive data at the point of entry is this process greatly reduces the scope
and cost of audits required by security regulations, such as PCI.

Product requirements
• F5 Networks BIG-IP Local Traffic Manager, version 11.0 or later.

• HPE SecureData Enterprise, version 5.0 or later.

Audience
The intended audience for this white paper is system integrators needing to implement the solution. This document assumes a basic familiarity
with the installation and setup of F5 BIG-IP LTM and F5 iRules.

Architecture and process
This section describes the solution’s general architecture as well as a process with detailed activities. A diagram of this process is included
for reference.

Architecture description
This solution assumes the use of F5 BIG-IP Local Traffic Manager version 11.0 or later in conjunction with the HPE SecureData Appliance version
5.0 or later. The F5 BIG-IP LTM allows creation of virtual servers that manipulate HTTP traffic, while the HPE SecureData Appliance provides
encryption services.

Technical white paper Page 3

Normally a system integrator creates a virtual server using the F5 BIG-IP LTM to manage traffic to and from a Web application. With this solution,
this first virtual server executes an F5 iRule to extract sensitive data from incoming HTTP requests.1 We refer to this virtual server and its
corresponding F5 iRule as the extractor.

Specifically for this solution, an integrator provisions a second F5 BIG-IP LTM virtual server to process encryption requests. This second virtual
server runs an F5 iRule that reformats HTTP requests generated by extractor F5 iRule into SOAP requests processed by the HPE SecureData
Appliance.2 We refer to this virtual server and its corresponding F5 iRule as the encryptor.

Process description
The two F5 BIG-IP LTM virtual servers described above together execute a process to encrypt data at the point of entry. This process has
six activities which are detailed below. See figure 2 for a diagram of the overall process illustrating these six activities.

1. When an end user submits a Web form, the corresponding Web browser generates an HTTP request.

2. The extractor, designated Web_Server_443 in the diagram, parses the incoming request. If the request contains sensitive information, such
as a credit card number, the extractor creates a sideband connection to issue a HTTP GET request, passing the sensitive data as a parameter.
At this time, the extractor blocks pending a response to this request.

3. The encryptor, designated Tokenization_vs in the diagram, receives this request and translates it into SOAP format, which is accepted by the
HPE SecureData Appliance. The encryptor also blocks pending a response to this SOAP request.

4. The HPE SecureData Appliance responds with encrypted data per SOAP semantics in real-time.

5. The encryptor parses the HPE SecureData Appliance response, generates a response to the extractor, and unblocks (continues with
processing).

6. The extractor parses the response to its sideband request. Using the encrypted form of the sensitive data, the extractor modifies and sends
the original user form submission to a target web server.

Figure 2. Architecture and Process Diagram of the F5 BIG-IP LTM and HPE SecureData Solution

1 Theoretically an F5 iRule can encrypt data in either a GET or POST request, but performance increases substantially if sensitive data is limited to POST requests.
2 Theoretically it is possible to perform all of the work in one virtual server. But decoupling extraction from encryption provides more throughput.

Technical white paper Page 4

Note the final result of this process is sensitive data contained in user’s original HTTP form is substituted with encrypted values prior to
application server submission. Thus the application server never processes any sensitive data. Such servers now lie outside the scope of
security audits.

The following section documents the processing details of the two F5 iRules used in this solution. Note one F5 iRule runs on the extractor
and the other runs on the encryptor.

Implementation details
Since the F5 BIG-IP Local Traffic Manager (F5 BIG-IP LTM) provides resources for parsing incoming HTTP requests to manage application
loading and the HPE SecureData Appliance provides resources for sensitive data encryption, one may achieve the solution via system integration
techniques. In standard F5 practice, one performs this integration by writing F5 iRules.

In its simplest form, this solution requires two F5 iRules. One runs on the F5 BIG-IP LTM virtual server that is also used for traffic management,
which we refer to as the extractor, and another runs on a second F5 BIG-IP LTM virtual server specifically provisioned for data protection, which
we refer to as an encryptor. This section documents the detailed design for each of these F5 iRules. Note that as a minimum, a system integrator
will need to substitute our example parameters with real world values for each unique implementation.

Extractor iRule
This section describes the functions of the F5 iRule running on the extractor. We also include a coding example.

Description
The extractor F5 iRule, named Intercept_Credit Card in this example, generates and sends a GET request to the encryptor when a page contains
sensitive data. After receiving a response from the encryptor, cipher text is substituted before forwarding the page to the Web application server.
Pages without sensitive data are passed on without modification.

The extractor F5 iRule should have as little impact as possible on any request that is not carrying any sensitive data. Accordingly, this rule
immediately returns if the request is a GET, since in this example submission of a payment page including sensitive data will always be a POST
request. Also, if the target of the request does not match the URL of the page collecting sensitive data, this F5 iRule returns. This processing is
done in the HTTP_REQUEST event of the iRule, before any data has even been received.

The extractor F5 iRule parses data from POST requests and extracts credit card numbers from the form data. Note that this does create a
dependency between the Web form design and this F5 iRule. It is possible to extract the value using a regular expression, but this is less efficient
and has a higher chance of returning a false positive.

Having found the credit card number, the data stream is split into two parts: everything before the first character of the number, and everything
after the last character. These parts are held in temporary variables. Meanwhile, the extractor opens a sideband connection to the encryptor, and
submits the credit card number to the encryptor for tokenization. Note in more complex setups, the extractor might also pass of the tokenization
format and authentication information as parameters. But instead, we use constants for these parameters.

When the encryptor returns cipher text on the sideband connection, the response is parsed to extract the tokenized value. Then the extractor
assembles a new payload from both parts of the original held in the temporary variables mentioned previously.

Technical white paper Page 5

Coding example
The following example F5 iRule implements processing for the extractor.

This is the rule initialization section.
Variable values will vary by environment.
The section executes once at virtual
server startup.

The processing done when a request arrives.

GET requests are ignored…

…as are requests for any URI other
than the target.

Otherwise, we collect the data in the request.

Set variables that will vary by environment
when RULE_INIT {

The target of packets that we want this rule to act on
set static::Tokenization_URI “index.html"

The text that precedes the actual cc number
set static::creditCardPrefix “cardNumber="

The length of this text
set static::prefixLength 11

The IP address that the sideband connection should
connect from (the myaddr argument)
set static::myaddr “192.168.0.100"

the name of the encryptor Virtual Server and to which
the sideband connection will be made
set static::TokenizationVirtualServer “Tokenization_vs"

Value to set in the Host: header of the

GET request, the destination web server
set static::HostString “ws.sd.davetest.com:443"

how many times we will check the connection?
set static::retries 100

How long each time will have before it times out,

in milliseconds? The effective timeout is the product # of the
retries and the timeout variables
set static::timeout 10

} # end when RULE_INIT

when HTTP_REQUEST {

 #Ignore GET requests by immediately returning from them

 #Request will then be forwarded to application server

 #without encryption
if {[HTTP::method] equals “GET"} {

 return

}

#Ignore POST request from non-sensitive pages
if {[HTTP::uri] contains $static::Tokenization_URI} {

 set Tokenize_Me 1

 } else {
 return

}

Technical white paper Page 6

Code run when data has been received.

Check whether we need to process this data…

…if so, parse out the card number from the
payload…

…and store the rest of the request that
surrounded the card number.

Now create the request that will be sent to
the HPE SecureData Enterprise server.

…specify where to send the request…

…and send it.

Start checking for a response from the
tokenization servers.

Parse the token out of the response…

…and reconstruct the request payload,
using the token.

 #Check for Content-Length header, and then collect
 data if {[HTTP::header exists “Content-Length"]} {

 HTTP::collect [HTTP::header “Content-Length"]

 } else {

 HTTP::collect 1048000

 }

} # end when HTTP_REQUEST

when HTTP_REQUEST_DATA {

 #Check whether we need to process this data
 if {[info exists Tokenize_Me]} {

 unset Tokenize_Me

 } else {

 #not aimed at the payment page
 return

} #end if info exists

#Compute position of credit card number

set pos [string first $static::creditCardPrefix[HTTP::payload]]

#Quit if not found

if {not $pos} return #nothing to do

#Compute credit card parsing parameters

set startOfActualNumberPos [expr {$pos + $static::prefixLength}]

find the credit card number

set ccNum [substr [HTTP::payload] $startOfActualNumberPos “&"]

set FirstPartOfInboundRequest [getfield [HTTP::payload] $ccNum 1]

set SecondPartOfInboundRequest [getfield [HTTP::payload] $ccNum 2]

Build simple GET request to encrypt credit card number

set tokenizationRequest “GET /tokenize?data=$ccNum HTTP/1.1\r\nUser-
Agent: AlmostCurl!\r\nHost: ${static::HostString}\r\nAccept: */*\r\n\
r\n"

Connect to encryptor virtual server

set TokenServer [connect -protocol TCP -myaddr $static::myaddr -timeout

100 -idle 5 -status connect_status $static::TokenizationVirtualServer]
set Token [findstr $recv_data “<token>" 7 “</token>"]
set TokenizedData “$FirstPartOfInboundRequest$Token$SecondPartOfInbound
Request"

Optional logging statement for debugging

#log local0. “TokenizedData : $TokenizedData"

#replace existing payload

HTTP::payload replace 0 [string length [HTTP::payload]] $TokenizedData

} #end if HTTP_REQUEST_DATA

Technical white paper Page 7

Encryptor F5 iRule
In this section we describe the function of the F5 iRule running on the encryptor. We also present a coding example.

Description
The function of the encryptor F5 iRule, named Perform_Tokenization in this example, is to create a SOAP request, send plain text data to the
HPE SecureData Appliance, collect cipher text from the HPE SecureData Appliance, and return the result to the extractor.

This F5 iRule performs standard text handling and parsing functions. The only HPE SecureData specific part of the code is the part that creates
the actual SOAP message that will be sent as a POST request to the HPE SecureData servers.

Coding example
The following example F5 iRule implements processing for the encryptor.

Set per-installation values. These could
also be passed as parameters from the
Intercept_ CC iRule.

We’ll need the content of the request.

Check that this is the request we’re
expecting. Here we elect to allow other
requests through, although there should
never be any.

Extract the data…

…and construct the SOAP query. Here we
are using the Protect Formatted Data Web
service method. Consult the HPE SecureData
Web Service Programmer’s Guide for
other options.

when RULE_INIT {

 # Implementation-specific parameters

 set static::identity “dave@voltage.com"

 set static::tweak “"

 set static::authmethod “SharedSecret"

 set static::authinfo “voltage123"

 set static::format “CC_Token"

}

when CLIENT_ACCEPTED {

 TCP::collect

}

when CLIENT_DATA {

 if {[TCP::payload] contains “GET /tokenize?"} {

 # Optional logging for debugging

 #log local0. “Tokenization GET request"

 } else {

 #log local0. “Some other request - let it through"

 TCP::release
 return

}#end when CLIENT_DATA

get the query string: this what we want to encrypt
set plaintext [findstr [TCP::payload] “data=" 5 “&"]

Build the SOAP query

set SOAPQuery “<soapenv:Envelope xmlns:soapenv=\“http://schemas.
xmlsoap.org/soap/envelope/\"xmlns:xsd=\“http://www.w3.org/2001/
XMLSchema\” xmlns:xsi=\“http://www.w3.org/2001/XMLSchema-instance\"
xmlns:vib=\“http://voltage.com/vibesimple\"><soapenv:Body><vib:ProtectF
ormattedData><dataIn>$plaintext</dataIn><format>$static::format</format
><identity>$static::identity</identity><tweak>$static::tweak</tweak><
authMethod>$static::authmethod</authMethod><authInfo>$static::authinfo</
authInfo></vib:ProtectFormattedData></soapenv:Body></soapenv:Envelope>"

Technical white paper Page 8

Some text manipulation to turn this GET
request into a POST before sending it to
the HPE SecureData servers.

Set the target of the POST request: this is
important.

Construct the POST request in steps.

Replace the request payload and send it on.

Parse the token out of the response from
the HPE SecureData server, place it in
an easily parsed response and send it back
to the caller (the Intercept_CC F5 iRule)

set uri [findstr [TCP::payload] “GET " 4 “ HTTP/1."]
regsub -all -nocase “GET" [TCP::payload] “POST" newdata

#log local0. “newdata : $newdata"

Set the target of the POST
set newdata1 [string map “$uri /vibesimple/services/
VibeSimplSOAP"$newdata]

Add necessary new headers

set newHeaders “Accept-Encoding: gzip,deflate\r\nContent-Type: text/
xml;charset=UTF-8\r\nSOAPAction: \"http://voltage.com/vibesimple/
ProtectFormattedData\“\r\nContent-Length: [string length $SOAPQuery]\
r\n"

regsub -all -nocase “Accept: " $newdata1 “${newHeaders}Accept: "
newdata2

set newdata3 ${newdata2}$SOAPQuery

TCP::payload replace 0 [TCP::payload length] $newdata3

TCP::release

when HTTP_RESPONSE {

 # Collect HTTP response data

 if { [HTTP::header exists “Content-Length"]}{

 HTTP::collect [HTTP::header “Content-Length"]

 } else {

 # assuming we’re doing one-at-a-time (as we must

 # be, since this explicitly calls ProtectFormattedData,

 # not the List variant

 # Given that, 300 bytes is plenty
 HTTP::collect 300

 }

} #end when HTTP_RESPONSE

when HTTP_RESPONSE_DATA {

 set wholeResponse [HTTP::payload]

 set token [findstr $wholeResponse “<dataOut xmlns=\"\“>" 18 “</
dataOut>"]

 set newContent “<token>$token</token>"

 HTTP::payload replace 0 [string length [HTTP::payload]]

${newContent}\r\n

 # not really worth maintaining the Chunked-Encoding
 HTTP::header remove Transfer-Encoding

 HTTP::header replace Content-Length [string length [HTTP::payload]]

} # end when HTTP_RESPONSE_DATA

Technical white paper Page 9

References
Protection of PII, PHI, and PCI Data for Enterprises Handling Sensitive Information
voltage.com/products/data-security/hp-securedata-enterprise/

Preserving Critical Business Functions by Maintaining Data Format
HPE Format Preserving Encryption:
voltage.com/technology/data-encryption/hp-format-preserving-encryption/

HPE Secure Stateless Tokenization:
voltage.com/technology/tokenization-and-key-management/hp-secure-stateless-tokenization/

HPE Security – Data Security Fact sheet
voltage.com/resources/collateral/fact-sheets/

F5 iRule Programming resources
F5 Configuration Guide For BIG-IP Local Traffic Management, Chapter 16, Writing iRules:
support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/LTM_config_guide_943.pdf

F5 Dev Central, iRules Forum:
devcentral.f5.com/irules

Tcl Reference Manual:
tmml.sourceforge.net/doc/tcl/index.html

HPE Security API Programing resources
HPE SecureData Sandbox Data sheet:
voltage.com/products/data-security/hp-securedata-sandbox/

HPE SecureData Sandbox Registration page:
voltage.com/products/data-security/hp-securedata-sandbox/

Help and support
Please contact: datasecurity.voltage.support@hpe.com

Support: (866) 440-8917

http://www.voltage.com/products/data-security/hp-securedata-enterprise/
http://www.voltage.com/technology/data-encryption/hp-format-preserving-encryption/
http://www.voltage.com/technology/tokenization-and-key-management/hp-secure-stateless-tokenization/
http://www.voltage.com/resources/collateral/fact-sheets/
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/LTM_config_guide_943.pdf.pdf
https://devcentral.f5.com/irules
http://tmml.sourceforge.net/doc/tcl/index.html
http://www.voltage.com/products/data-security/hp-securedata-sandbox/
http://www.voltage.com/products/data-security/hp-securedata-sandbox/
mailto:datasecurity.voltage.support@hpe.com

Technical white paper

Sign up for updates

Rate this document

© Copyright 2015–2016 Hewlett Packard Enterprise Development LP. The information contained herein is subject to change without

notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett Packard
Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

F5, F5 Networks, and the F5 logo are trademarks of F5 Networks, Inc. in the U.S. and in certain other countries. Other F5 trademarks are
identified at f5.com. Any other products, services, taglines/slogans, or company names referenced herein may be trademarks of their
respective owners with no endorsement or affiliation, express or implied, claimed by F5.

All other third-party marks are property of their respective owner(s).

4AA6-0859ENW, May 2016, Rev. 1

About HPE Security – Data Security
HPE Security – Data Security is a leader in data-centric security safeguarding data throughout its entire lifecycle—at rest, in motion,
in use—across the cloud, on-premise and mobile environments with continuous protection.

Learn more at
voltage.com
hpe.com/software/datasecurity

http://www.hpe.com/info/getupdated
http://www.facebook.com/sharer.php?u=http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA6-0859ENW
http://twitter.com/home/?status=HPE%20SecureData%20&%20F5%20Networks,%20Inc.,%20Technical%20White%20Paper+@+http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA6-0859ENW
http://www.linkedin.com/shareArticle?mini=true&ro=true&url=http://h20195.www2.hp.com/V2/GetDocument.aspx?docname%3D4AA6-0859ENW&title=HPE+SecureData+&+F5+Networks,+Inc.,+Technical+White+Paper+&armin=armin
https://hpresearch.az1.qualtrics.com/SE/?SID=SV_6EuQKOr2Ku1CUzH&Pubnumber=4AA6-0859ENW
https://www.voltage.com/
http://www.hpe.com/software/datasecurity

	Introduction
	Product requirements
	Audience

	Architecture and process
	Architecture description
	Process description

	Implementation details
	Extractor iRule
	Description

	Coding example
	Encryptor F5 iRule
	Description

	Coding example

	References
	Protection of PII, PHI, and PCI Data for Enterprises Handling Sensitive Information
	Preserving Critical Business Functions by Maintaining Data Format
	HPE Security – Data Security Fact sheet
	F5 iRule Programming resources
	HPE Security API Programing resources
	Help and support

	About HPE Security – Data Security
	Learn more at
	voltage.com
	hpe.com/software/datasecurity

